Abstract

Purpose Neodymium yttrium aluminum garnet (Nd:YAG) laser capsulotomy is considered as safe and effective method in the treatment of posterior capsule opacification. Nevertheless, side effects are described. The incorrectly adjusted focus of the laser beam during the procedure can lead to so-called YAG-pits or YAG-shots. In this experimental study, we measured spectral transmission to evaluate the image contrast and analyze the impact of YAG-pits in intraocular lenses (IOL). Methods Acrylic, foldable, one-piece IOLs with 6.0 mm optic and different material properties were studied. These included: monofocal IOLs and enhanced monofocal IOLs with water content of 0.3%, 26.0%, and 4.0% and a refractive index of 1.49, 1.46, and 1.54, respectively. All measurements were done with new, unaltered IOLs and IOLs with YAG-pits. Damage was intentionally created, performing YAG-pits (n = 7) in the central zone (3.5 mm) using a photodisruption laser (2.0mJ). All laboratory measurements were repeated: These included surface topography characterization, United States Air Force (USAF) resolution test chart analysis, spectral transmittance measurements and through focus contrast measurement. Results Significant differences were found between the unaltered lenses and lenses with defects. The YAG-pits within the optic of the IOLs decreased the image contrast and spectral transmission and changed results of USAF test images at the focal position by 62%, 57% and 54%, respectively. In all IOLs a reduction of the relative intensity of total transmitted light was observed between 450 and 700 nm wavelength. Conclusion This experimental study confirmed that the IOL image performance deteriorates with YAG-pits. The total intensity of transmitted light or transmittance (without scattering) was reduced in the wavelength between 450 and 700 nm. The contrast was significantly reduced and USAF test targets showed much worse results compared to unmodified counterparts. There was no systematic difference between monofocal and enhanced monofocal lenses. Further experiments should investigate the effect of YAG-pits on diffractive IOLs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call