Abstract

Adaptive Fourier decomposition (AFD) is a newly developed signal processing tool that can adaptively decompose any single signal using a Szegö kernel dictionary. To process multiple signals, a novel stochastic-AFD (SAFD) theory was recently proposed. The innovation of this study is twofold. First, a SAFD-based general multi-signal sparse representation learning algorithm is designed and implemented for the first time in the literature, which can be used in many signal and image processing areas. Second, a novel SAFD based image compression framework is proposed. The algorithm design and implementation of the SAFD theory and image compression methods are presented in detail. The proposed compression methods are compared with 13 other state-of-the-art compression methods, including JPEG, JPEG2000, BPG, and other popular deep learning-based methods. The experimental results show that our methods achieve the best balanced performance. The proposed methods are based on single image adaptive sparse representation learning, and they require no pre-training. In addition, the decompression quality or compression efficiency can be easily adjusted by a single parameter, that is, the decomposition level. Our method is supported by a solid mathematical foundation, which has the potential to become a new core technology in image compression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call