Abstract

Compression and encryption of images are emerging as recent topics in the area of research to improve the performance of data security. A joint lossless image compression and encryption algorithm based on Integer Wavelet Transform (IWT) and the Hybrid Hyperchaotic system is proposed to enhance the security of data transmission. Initially, IWT is used to compress the digital images and then the encryption is accomplished using the Hybrid Hyperchaotic system. A Hybrid Hyperchaotic system; Fractional Order Hyperchaotic Cellular Neural Network (FOHCNN) and Fractional Order Four-Dimensional Modified Chua’s Circuit (FOFDMCC) is used to generate the pseudorandom sequences. The pixel substitution and scrambling are realized simultaneously using Global Bit Scrambling (GBS) that improves the cipher unpredictability and efficiency. In this study, Deoxyribonucleic Acid (DNA) sequence is adopted instead of a binary operation, which provides high resistance to the cipher image against crop attack and salt-and-pepper noise. It was observed from the simulation outcome that the proposed Hybrid Hyperchaotic system with IWT demonstrated more effective performance in image compression and encryption compared with the existing models in terms of parameters such as unified averaged changed intensity, a number of changing pixels rate, and correlation coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.