Abstract

Manifold learning based image clustering models are usually employed at local level to deal with images sampled from nonlinear manifold. Usually, gray level image features are used that are obtained by resizing original images through linear interpolation approach. However, significant image variance information is lost in gray level image features. Clustering models that are based on discriminant analysis can be made more effective in principal component analysis (PCA) space whereas leading projection vectors contain significant image variance information. For optimal clustering performance, we used two-dimensional two-directional PCA technique to extract significant image features. We report clustering performance of Spectral Embedded Clustering (SEC) model using discriminant image features on 6 benchmark image databases. Clustering performance is compared with existing state-of-art clustering approaches. Significant overall performance improvement is observed using proposed discriminant image features over gray level image features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.