Abstract
Typical machine learning classification benchmark problems often ignore the full input data structures present in real-world classification problems. Here we aim to represent additional information as "hints" for classification. We show that under a specific realistic conditional independence assumption, the hint information can be included by late fusion. In two experiments involving image classification with hints taking the form of text metadata, we demonstrate the feasibility and performance of the fusion scheme. We fuse the output of pre-trained image classifiers with the output of pre-trained text models. We show that calibration of the pre-trained models is crucial for the performance of the fused model. We compare the performance of the fusion scheme with a mid-level fusion scheme based on support vector machines and find that these two methods tend to perform quite similarly, albeit the late fusion scheme has only negligible computational costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.