Abstract

Image with MPEG-7 descriptors as features may loss local details. In this work, we combine MPEG-7 descriptors with local feature key points to cover both global and local image characteristics. Images are classified by a Radial Basis Function Neural Network (RBFNN) trained via a minimization of Localized Generalization Error Model (L-GEM). In this paper, we extract local feature key points by the Scale Invariant Feature Transform (SIFT). Four color and three texture MPEG-7 descriptors are extracted. Experimental results show that the introduction of local feature key points effectively improves the testing accuracy of image classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.