Abstract
光学元件的表面疵病,即表面缺陷,其形状的大小会直接影响光学系统的性能,在对表面缺陷进行分类时,所面对的很多表面缺陷的形状都是不规则的,依靠普通的模式识别技术,分类很难达到预期的效果。为解决精密光学元件表面缺陷分类方法中精度低、耗时长的问题,提出了基于卷积神经网络的精密光学元件表面缺陷分类方法。采用散射法获取表面缺陷图像,分析其成像特点,通过对图像进行旋转,镜像扩增了数据集,加强了网络的训练能力。使用AC训练网络模型,在不增加额外计算量的同时加强了网络的特征获取力。通过Softmax分类器,将精密光学元件表面缺陷分为划痕、麻点及噪点3类。实验结果表明,所使用的模型对缺陷分类精度超过99.05%。
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.