Abstract

Image and video sensors are increasingly being deployed in complex systems due to the rich process information that these sensors can capture. As a result, image data play an important role in process monitoring and control in different application domains such as manufacturing processes, food industries, medical decision-making, and structural health monitoring. Existing process monitoring techniques fail to fully utilize the information of color images due to their complex data characteristics including the high-dimensionality and correlation structure (i.e., temporal, spatial and spectral correlation). This paper proposes a new image-based process monitoring approach that is capable of handling both grayscale and color images. The proposed approach models the high-dimensional structure of the image data with tensors and employs low-rank tensor decomposition techniques to extract important monitoring features monitored using multivariate control charts. In addition, this paper shows the analytical relationships between different low-rank tensor decomposition methods. The performance of the proposed method in quick detection of process changes is evaluated and compared with existing methods through extensive simulations and a case study in a steel tube manufacturing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.