Abstract

The diffractive deep neural network is a novel network model that applies the principles of diffraction to neural networks, enabling machine learning tasks to be performed through optical principles. In this paper, a fully optical authentication model is developed using the diffractive deep neural network. The model utilizes terahertz light for propagation and combines it with a self-calibration single-pixel imaging model to construct a comprehensive optical authentication system with faster authentication speed. The proposed system filters the authentication images, establishes an optical connection with the Fourier zero-frequency response of the illumination pattern, and introduces the signal-to-noise ratio as a criterion for batch image authentication. Computer simulations demonstrate the fast speed and strong automation performance of the proposed optical authentication system, suggesting broad prospects for the combined application of diffractive deep neural networks and optical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.