Abstract
The Easy Path Wavelet Transform (EPWT) has recently been proposed by one of the authors as a tool for sparse representations of bivariate functions from discrete data, in particular from image data. The EPWT is a locally adaptive wavelet transform that works along pathways through the array of function values exploiting the local correlations of the given data. However, the EPWT suffers from its adaptivity costs that arise from the storage of path vectors. In this paper, we propose a new hybrid method for image approximation that exploits the advantages of the usual tensor product wavelet transform for representing smooth images and uses the EPWT for an efficient representation of edges and texture. Numerical results show the efficiency of this procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.