Abstract

In this study, a novel multiple frame based image and texture independent Convolutional Neural Network (CNN) noise estimator is introduced. Noise estimation is a crucial step for denoising algorithms, especially for ones that are called “non-blind”. The estimator works for additive Gaussian noise for varying noise levels. The noise levels studied in this work have a standard deviation equal to 5 to 25 increasing 5 by 5. Since there is no database for noisy multiple images to train and validate the network, two frames of synthetic noisy images with a variety of noise levels are created by adding Additive White Gaussian Noise (AWGN) to each clean image. The proposed method is applied on the most popular gray level images besides the color image databases such as Kodak, McMaster, BSDS500 in order to compare the results with the other works. Image databases comprise indoor and outdoor scenes that have fine details and richer texture. The estimator has an accuracy rate of 99 % for the classification and favourable results for the regression. The proposed method outperforms traditional methods in most cases. And the regression output can be used with any non-blind denoising method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.