Abstract

Machine vision methods are presented for the analysis of solder balls in integrated circuits. The algorithms are founded on counter fitting using a multiparameter Hough transform and on polynomial-classifier-based pattern recognition. The first method is used to show the complexity of the inspection problem, especially in the presence of high-precision requirements. In this connection, it is shown that subpixel accuracy is not obtainable even under the assumption of a perfect camera system which determines the resolution necessary for the measurement of a given maximum-volume distortion. The second method is carried out by computing a large number of features on the original image after individual solder balls are segmented by a projection technique. This approach can be considered as a control-free image segmentation paradigm, since it does not rely on properly sequencing several image-analysis modules. Further experimentation with a large pool of defective solder balls is necessary to confirm the applicability of these machine vision algorithms to a real-world manufacturing inspection systems. A general image-segmentation architecture is proposed, which enables the computation of the necessary low-level image features as well as pixel classification at video-rate speed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call