Abstract
A platform for determining size distribution of micron (1-100μm) and larger (> 100μm) aggregates of therapeutic IgG has been established by using image processing algorithms for brightfield and fluorescence microscope images. The algorithm for brightfield images involved conversion to grayscale followed by pixel-based and size-based thresholding. Morphological operations were then applied and the size distribution of aggregates were extracted. Fluorescence images of the aggregates of mAb tagged by a fluorescent dye were captured using widefield fluorescence microscope, confocal laser scanning microscope, and Cytell Cell Imaging System and the images were processed using a series of denoising steps followed by thresholding and morphological operations. The samples were subjected to different stresses, among which the aggregates were visible in the microscope for sample subjected to bubbling, stirring, and temperature. The images of these aggregates were effectively denoised and the size distribution of aggregates was analyzed using the algorithm. The overall aggregate size distribution obtained by image processing ranged in the micron and higher size range. The size obtained from brightfield image processing was validated using images of liquid chromatography resins. Further, the aggregate size distribution obtained using image processing was compared with experimental techniques such as Mastersizer 2000 and Micro Flow Imaging. It was found that analysis of IgG aggregates using image processing could serve as an orthogonal methodology to the existing approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.