Abstract

The herbicide sulfometuron methyl is a potent inhibitor of the branched-chain amino acid biosynthetic enzyme acetolactate synthase (ALS) isolated from bacteria, fungi, and plants. However, it did not prevent growth of wild-type Salmonella typhimurium LT2 or Escherichia coli K-12. These species each contain two acetolactate synthase isozymes. Growth of S. typhimurium and E. coli mutants lacking ALS I was prevented by the herbicide, suggesting that activity of the remaining ALS isoenzyme (II or III, respectively) was stopped by sulfometuron methyl. Synthesis of ALS I requires either an relA function or an elevated cyclic AMP level. A relA mutant of S. typhimurium was inhibited by sulfometuron methyl on rich carbon sources that display a basal cyclic AMP level but not on poor carbon sources where the cyclic AMP concentration is elevated. When L-valine, which allosterically inhibits ALS I activity, was added, growth retardation of the relA- strain by sulfometuron methyl was observed on both poor and rich carbon sources. Enzymological analyses indicated that ALS I activities derived from both species were resistant to the herbicide. In contrast, activities of S. typhimurium ALS II and E. coli ALS III were abolished by sulfometuron methyl.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.