Abstract

Emplacement of 1.6 to 1.3 Ga Mesoproterozoic plutons in Baltica and Laurentia formed an immense belt of A-type granite batholiths that include (1) low-fO 2, ilmenite-series granite intrusions from the Baltic region to Wyoming, (2) high-fO 2, magnetite-series granite intrusions of the central to southwestern U.S., and (3) peraluminous, two-mica granite intrusions from Colorado to central Arizona. These mineralogic divisions are mirrored by substantial elemental and oxygen isotopic differences. The ilmenite-series granites, which often contain classic rapakivi textures, have the highest Fe/Mg ratios and are highest in LIL element enrichment. They also have the lowest whole-rock δ 18O values at 5.7‰ to 7.7‰. The magnetite-series granites are less potassic, less LILE-enriched, and have higher whole-rock δ 18O values, ranging from 7.6‰ to 10.8‰. Although they retain A-type characteristics, the peraluminous granites are the least LILE-enriched and have the lowest Fe/Mg ratios. They also have the highest whole-rock δ 18O values ranging from 8.8‰ to 12.0‰. Feldspar, where strongly reddened, can exhibit elevated δ 18O values, which is interpreted to indicate subsolidus exchange with surface-derived aqueous fluids. Quartz δ 18O values are interpreted to generally retain their magmatic values. The transcontinental mineralogic, chemical, and oxygen isotopic variations are interpreted as indicative of broad changes in the composition of a lower crustal source, which is compatible with a reduced mantle-derived crustal source for the ilmenite-series granites and a more oxidized crustal source for the others, including a metasedimentary component in the source for the two-mica granite subprovince. Widespread thermal metamorphism at ∼1.4 Ga is present throughout much of the magmatic province and is viewed as a consequence of this immense event. Compressional deformation associated with several western 1.4 Ga Laurentia granite batholiths, alternatively interpreted as the distal expressions of a presumed 1.4 Ga orogeny, have at least in part been shown to be localized on preexisting Paleoproterozoic zones of deformation. Thus, we do not find compelling evidence for a ∼1.4 Ga orogeny related to the formation of most of these granites. Renewed intrusions at ∼1.0–1.1 Ga between and immediately following phases of the Grenville orogeny indicate that situations leading to their formation need to be more broadly considered. The origin of this red granite-forming event in Laurentia and Baltica is considered as part of a global magmatic event that was coeval with intrusion of massif anorthosites and associated charnockites. Most are viewed as anorogenic, but it is recognized that the same conditions leading to their formation may have occurred during extensional phases of orogens. The immense volumes of red granites produced are also essentially unique to the Mesoproterozoic and appear to be tied to the stabilization and eventual break up of supercontinents of both Paleoproterozoic and Mesoproterozoic age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.