Abstract

AbstractBased on petrography, mineral chemistry, and petrology, the physico-chemical evolution of an agpaitic dyke was found to be very similar to that of the neighbouring Ilímaussaq complex. Various mineral assemblages were used to reconstruct the crystallization conditions of the dyke rock for different stages during cooling. The early magmatic phenocryst assemblage is alkali feldspar + nepheline + augite + olivine + magnetite and indicates liquidus temperatures of ∼850ºC, silica activities of ∼0.5, and oxygen fugacities of FMQ –1.5 to –3. The groundmass assemblage albite + microcline + nepheline + sodalite + arfvedsonite + aegirine + aenigmatite + astrophyllite indicates lower temperatures of between 600 and 450ºC, at silica activities of 0.25, and oxygen fugacities around the FMQ buffer. Amphibole composition strongly responds to fluorite saturation and proves crystallization occurred in a system closed to oxygen. Late-stage hydrothermal conditions are indicated by the conversion of nepheline and sodalite to analcime and the growth of aegirine on arfvedsonite. These late-stage reactions are constrained to temperatures of <300°C, water activities of between 0.5 and unity, and oxygen fugacities above MH. The dyke has to be regarded as a small equivalent of the larger Ilímaussaq complex, in which identical differentiation processes proceeded at a scale very different in terms of magma volume and cooling times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.