Abstract

Variations of model predictions of the environmental fate of organic contaminants are usually analyzed for only one or at most a few selected chemicals, even though parameter sensitivity and contribution to uncertainty are widely different for different chemicals. A graphical method is introduced that allows for the comprehensive investigation of model sensitivity and uncertainty for all persistent organic nonelectrolytes at the same time. This is achieved by defining a two-dimensional hypothetical "chemical space" as a function of the equilibrium partition coefficients between air, water, and octanol (KOW, KAW, KOA), and plotting sensitivity and/or uncertainty of a specific model result to each input parameter as a function of this chemical space. The approach is illustrated for the bulk phase concentrations in air, water, soil, and sediment calculated by a level III model. Colored contour maps facilitate the identification of those input parameters that cause a high output variation of hypothetical and real chemicals. They also allow for the easy categorization of chemicals in terms of common parameter sensitivities, and thus comparable environmental behavior. Sensitivity varies with the mode of emission and the degradability of the chemicals, making it necessary to develop multiple sets of contour maps. Comparison of these sets of maps in turn allows the investigation of how parameter sensitivities change as a result of changes in mode of emission and persistence. The presented method can be used for investigating the sensitivity of any prediction obtained with any linear fate model that characterizes the partitioning behavior of organic chemicals with KAW, KoW, and KOA. Once the sensitivity maps have been constructed for a given environmental scenario, it is possible to perform a sensitivity analysis for a specific chemical by simple. placement of the substances' partitioning combinations within the chemical space. The maps can further contribute to the mechanistic understanding of a model's behavior, can aid in explaining observations of divergent environmental behavior of related substances, and can provide a rationale for grouping chemicals with similar model behavior, or for selecting representative example chemicals for a model investigation. They can also help in deciding when accurate and precise knowledge of physical chemical property data is crucial and when approximate numbers suffice to conduct a model investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.