Abstract
This article presents a novel approach for illumination and rotation invariant texture representation for face recognition. A gradient transformation is used as illumination invariance property and a Galois Field for the rotation invariance property. The normalized cumulative histogram bin values of the Gradient Galois Field transformed image represent the illumination and rotation invariant texture features. These features are further used as face descriptors. Experimentations are performed on FERET and extended Cohn Kanade databases. The results show that the proposed method is better as compared to Rotation Invariant Local Binary Pattern, Log-polar transform and Sorted Local Gradient Pattern and is illumination and rotation invariant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Vision and Image Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.