Abstract
We plan to measure several 2S–2P transition frequencies in μ4He+ and μ3He+ by means of laser spectroscopy with an accuracy of 50 ppm. This will lead to a determination of the corresponding nuclear rms charge radii with a relative accuracy of 3 × 10−4, limited by the uncertainty of the nuclear polarization contribution. First, these measurements will help to solve the proton radius puzzle. Second, these very precise nuclear radii are benchmarks for ab initio few-nucleon theories and potentials. Finally when combined with an ongoing measurement of the 1S–2S transition in He+, these measurements will lead to an enhanced bound-state QED test of the 1S Lamb shift in He+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.