Abstract

The reduction of C=O groups with silanes catalyzed by electron-deficient boranes follows a counterintuitive mechanism in which the Si-H bond is activated by the boron Lewis acid prior to nucleophilic attack of the carbonyl oxygen atom at the silicon atom. The borohydride thus formed is the actual reductant. These steps were elucidated by using a silicon-stereogenic silane, but applying the same technique to the related reduction of C=N groups was inconclusive due to racemization of the silicon atom. The present investigation now proves by the deliberate combination of our axially chiral borane catalyst and axially chiral silane reagents (in both enantiomeric forms) that the mechanisms of these hydrosilylations are essentially identical. Unmistakable stereochemical outcomes for the borane/silane pairs show that both participate in the enantioselectivity-determining hydride-transfer step. These experiments became possible after the discovery that our axially chiral C(6)F(5)-substituted borane induces appreciable levels of enantioinduction in the imine hydrosilylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.