Abstract

BackgroundBovine respiratory disease (BRD) is caused by growth of single or multiple species of pathogenic bacteria in lung tissue following stress and/or viral infection. Next generation sequencing of 16S ribosomal RNA gene PCR amplicons (NGS 16S amplicon analysis) is a powerful culture-independent open reference method that has recently been used to increase understanding of BRD-associated bacteria in the upper respiratory tract of BRD cattle. However, it has not yet been used to examine the microbiome of the bovine lower respiratory tract. The objective of this study was to use NGS 16S amplicon analysis to identify bacteria in post-mortem lung and lymph node tissue samples harvested from fatal BRD cases and clinically healthy animals. Cranial lobe and corresponding mediastinal lymph node post-mortem tissue samples were collected from calves diagnosed as BRD cases by veterinary laboratory pathologists and from clinically healthy calves. NGS 16S amplicon libraries, targeting the V3-V4 region of the bacterial 16S rRNA gene were prepared and sequenced on an Illumina MiSeq. Quantitative insights into microbial ecology (QIIME) was used to determine operational taxonomic units (OTUs) which corresponded to the 16S rRNA gene sequences.ResultsLeptotrichiaceae, Mycoplasma, Pasteurellaceae, and Fusobacterium were the most abundant OTUs identified in the lungs and lymph nodes of the calves which died from BRD. Leptotrichiaceae, Fusobacterium, Mycoplasma, Trueperella and Bacteroides had greater relative abundances in post-mortem lung samples collected from fatal cases of BRD in dairy calves, compared with clinically healthy calves without lung lesions. Leptotrichiaceae, Mycoplasma and Pasteurellaceae showed higher relative abundances in post-mortem lymph node samples collected from fatal cases of BRD in dairy calves, compared with clinically healthy calves without lung lesions. Two Leptotrichiaceae sequence contigs were subsequently assembled from bacterial DNA-enriched shotgun sequences.ConclusionsThe microbiomes of the cranial lung lobe and mediastinal lymph node from calves which died from BRD and from clinically healthy H-F calves have been characterised. Contigs corresponding to the abundant Leptotrichiaceae OTU were sequenced and found not to be identical to any known bacterial genus. This suggests that we have identified a novel bacterial species associated with BRD.

Highlights

  • Bovine respiratory disease (BRD) is caused by growth of single or multiple species of pathogenic bacteria in lung tissue following stress and/or viral infection

  • Comparison of 16S ribosomal RNA (rRNA) gene amplicon sequencing and regional veterinary laboratories (RVL) qPCR This 16S rRNA gene amplicon sequencing assay identified many more bacteria present in post-mortem lung and lymph node tissue from calves which died from BRD than were identified from the same calves at the RVLs using both culture and uniplex polymerase chain reaction (PCR) on swab samples from the pneumonic lungs (Additional file 9)

  • The 16S rRNA gene amplicon assay showed that many bacteria which are not currently screened for by PCR or cultured at RVLs were found to be present within the cranial lung lobes and mediastinal lymph nodes from calves which died from BRD, including Leptotrichiaceae, Fusobacterium, Helcococcus, Mycoplasma, Ureaplasma, and Bacteroides

Read more

Summary

Introduction

Bovine respiratory disease (BRD) is caused by growth of single or multiple species of pathogenic bacteria in lung tissue following stress and/or viral infection. BRD-associated viral and Mycoplasmal pathogens damage the lungs by causing immunosuppression, ciliary dysfunction and cellular necrosis [15, 16] This damage allows proliferation and colonisation by secondary bacterial pathogens, commonly including Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Mycoplasma bovis and Trueperella pyogenes, which are normally commensal in the nasopharyngeal region of cattle [1, 7, 11, 17,18,19]. These bacteria evade the lung’s remaining immune defences and their virulence factors cause progression of the disease if left untreated [7, 11, 15, 16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call