Abstract

Community detection is widely used in social networks to uncover groups of related vertices (nodes). In cryptocurrency transaction networks, community detection can help identify users that are most related to known illegal users. However, there are challenges in applying community detection in cryptocurrency transaction networks: (1) the use of pseudonymous addresses that are not directly linked to personal information make it difficult to interpret the detected communities; (2) on Bitcoin, a user usually owns multiple Bitcoin addresses, and nodes in transaction networks do not always represent users. Existing works on cluster analysis on Bitcoin transaction networks focus on addressing the later using different heuristics to cluster addresses that are controlled by the same user. This research focuses on illegal community detection containing one or more illegal Bitcoin addresses. We first investigate the structure of Bitcoin transaction networks and suitable community detection methods, then collect a set of illegal addresses and use them to label the detected communities. The results show that 0.06% of communities from daily transaction networks contain one or more illegal addresses when 2,313,344 illegal addresses are used to label the communities. The results also show that distance-based clustering methods and other methods depending on them, such as network representation learning, are not suitable for Bitcoin transaction networks while community quality optimization and label-propagation-based methods are the most suitable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.