Abstract
A novel approach to progress improvement of the economic performance in model predictive control (MPC) systems is developed. The conventional LQG based economic performance design provides an estimation which cannot be done by the controller while the proposed approach can develop the design performance achievable by the controller. Its optimal performance is achieved by solving economic performance design (EPD) problem and optimizing the MPC performance iteratively in contrast to the original EPD which has nonlinear LQG curve relationship. Based on the current operating data from MPC, EPD is transformed into a linear programming problem. With the iterative learning control (ILC) strategy, EPD is solved at each trial to update the tuning parameter and the designed condition; then MPC is conducted in the condition guided by EPD. The ILC strategy is proposed to adjust the tuning parameter based on the sensitivity analysis. The convergence of EPD by the proposed ILC has also been proved. The strategy can be applied to industry processes to keep enhancing the performance and to obtain the achievable optimal EPD. The performance of the proposed method is illustrated via an SISO numerical system as well as an MIMO industry process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.