Abstract

We investigated the role of IL-6 in myelin oligodendrocyte glycoprotein (MOG) peptide induced experimental autoimmune encephalomyelitis (EAE) using IL-6-deficient mice and found that IL-6-deficient mice were resistant to active induction of EAE, but that the treatment of those mice with IL-6 during the preclinical phase caused typical EAE. We also found that both wild-type and IL-6-deficient mice were resistant to passive transfer of EAE by lymphocytes from IL-6-deficient mice, but that passive transfer of lymphocytes from wild-type mice induced typical EAE in IL-6-deficient mice. Histological abnormalities of the central nervous system (CNS) in those IL-6-deficient mice with EAE were similar to those in wild-type mice with EAE. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed no difference in the production of inflammatory cytokines such as IL-1β, IL-2, TNF-α, and IFN-γ in the CNS of IL-6-deficient mice with EAE as compared to the CNS of wild-type mice with EAE. These results indicated that IL-6 might be an important factor in the induction phase, but might have little influence on the effector phase of EAE. We further estimated the production of cytokines in MOG-stimulated lymph node (LN) cells by enzyme-linked immunosorbent assay. Increased IL-4 and IL-10 production and reduced IL-2 and IFN-γ production were observed in LN cells from IL-6-deficient mice as compared to LN cells from wild-type mice. These results suggested that a shift of T cell responses from Th1 to Th2 might explain the resistance of IL-6-deficient mice to EAE. Taken together, IL-6 may play a crucial role in the induction phase of EAE by modulating Th1/Th2 balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.