Abstract

Myelodysplastic syndromes (MDS) are a group of age-related myeloid malignancies that are characterized by ineffective hematopoiesis and increased incidence of developing acute myeloid leukemia (AML). The mechanisms of MDS to AML transformation are poorly understood, which is partially due to the scarcity of leukemia transformation mouse models. Recently, we established a mDia1/miR146a double knockout (DKO) mouse model mimicking human del(5q) MDS. DKO mice present with pancytopenia with aging due to myeloid suppressive cell (MDSC) expansion and over-secretion of pro-inflammatory cytokines including TNF-a and interlukine-6 (IL-6). In the current study, we found that most of the DKO mice underwent leukemic transformation at 12-14 months of age. The bone marrow of these mice was largely replaced by c-Kit+ blasts in a background of fibrosis. Flow cytometry analysis and in vitro colony formation assay demonstrated that hematopoietic stem progenitor cells (HSPCs) in DKO bone marrow were dramatically declined. The leukemic DKO mice had elevated white blood cell counts and circulating blasts, which contributes to the myeloid cell infiltration in non-hematopoietic organs including liver and lung. Moreover, the splenocytes from DKO old mice efficiently reconstitute the hematopoiesis, but led to a 100% disease occurrence with rapid lethality in gramma irradiated recipient mice, suggesting the leukemic stem cells enriched in DKO spleen were transplantable. Given the significant roles of the inflammatory cytokines in the pathogenesis of the DKO mice, we crossed DKO mice with IL-6 knockout mice and generated mDia1/miR-146a/IL-6 triple knockout (TKO) mice. Strikingly, the TKO mice showed dramatic rescue of the leukemic transformation of the DKO mice in that all the aforementioned leukemic phenotypes were abolished. In addition, IL-6 deficiency normalized the cell comparts and prevented leukemic transplantation ability in TKO spleen. Single cell RNA sequencing analyses indicated that DKO leukemic mice had increased monocytic blast population with upregulation of Fn1, Csf1r, and Lgals1, that was completely diminished with IL-6 knockout. Through a multiplex ELISA, we found IL-6 deficiency attenuated the levels of multiple inflammatory cytokines in TKO serum. In summary, we report a mouse model with MDS leukemic transformation during aging, which could be reverted with the depletion of IL-6. Our data indicate that IL-6 could be a potential target in high risk MDS. Disclosures No relevant conflicts of interest to declare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call