Abstract
BackgroundMast cell localization within the airway smooth muscle (ASM)-bundle plays an important role in the development of airway hyper-responsiveness (AHR). Genomewide association studies implicate the ‘alarmin’ IL-33 in asthma, but its role in mast cell–ASM interactions is unknown.ObjectivesWe examined the expression and functional role of IL-33 in bronchial biopsies of patients with and without asthma, ex vivo ASM, mast cells, cocultured cells and in a mouse model system.MethodsIL-33 protein expression was assessed in human bronchial tissue from 9 healthy controls, and 18 mild-to-moderate and 12 severe asthmatic patients by immunohistochemistry. IL-33 and ST2 mRNA and protein expression in human-derived ASM, epithelial and mast cells were assessed by qPCR, immunofluorescence and/or flow cytometry and ELISA. Functional assays were used to assess calcium signalling, wound repair, proliferation, apoptosis and contraction. AHR and inflammation were assessed in a mouse model.ResultsBronchial epithelium and ASM expressed IL-33 with the latter in asthma correlating with AHR. ASM and mast cells expressed intracellular IL-33 and ST2. IL-33 stimulated mast cell IL-13 and histamine secretion independent of FcεR1 cross-linking and directly promoted ASM wound repair. Coculture of mast cells with ASM activated by IL-33 increased agonist-induced ASM contraction, and in vivo IL-33 induced AHR in a mouse cytokine installation model; both effects were IL-13 dependent.ConclusionIL-33 directly promotes mast cell activation and ASM wound repair but indirectly promotes ASM contraction via upregulation of mast cell-derived IL-13. This suggests that IL-33 may present an important target to modulate mast cell–ASM crosstalk in asthma.
Highlights
Mast cell localization within the airway smooth muscle (ASM)-bundle plays an important role in the development of airway hyper-responsiveness (AHR)
IL-33 modulates mast cell–ASM crosstalk in asthma augmented mast cell mediator release and, indirectly, increased ASM contraction following coculture with mast cells via upregulation of mast cell-derived IL-13
We demonstrated IL-33 expression in vivo and in vitro in the bronchial epithelium and ASM and in primary mast cells
Summary
Mast cell localization within the airway smooth muscle (ASM)-bundle plays an important role in the development of airway hyper-responsiveness (AHR). Objectives: We examined the expression and functional role of IL-33 in bronchial biopsies of patients with and without asthma, ex vivo ASM, mast cells, cocultured cells and in a mouse model system. IL-33 stimulated mast cell IL-13 and histamine secretion independent of FceR1 cross-linking and directly promoted ASM wound repair. Coculture of mast cells with ASM activated by IL-33 increased agonist-induced ASM contraction, and in vivo IL-33 induced AHR in a mouse cytokine installation model; both effects were IL-13 dependent. Conclusion: IL-33 directly promotes mast cell activation and ASM wound repair but indirectly promotes ASM contraction via upregulation of mast cell-derived IL-13. This suggests that IL-33 may present an important target to modulate mast cell–ASM crosstalk in asthma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.