Abstract

Several studies have shown physiological functions of interleukin (IL)-32, a novel cytokine. However, the role of IL-32 in cancer development has not been reported. In this study, we showed that IL-32γ inhibited tumor growth in IL-32γ-overexpressing transgenic mice inoculated with melanoma as well as colon tumor growth in xenograft nude mice inoculated with IL-32γ-transfected colon cancer cells (SW620). The inhibitory effect of IL-32γ on tumor growth was associated with the inhibition of constitutive activated nuclear transcription factor-κB (NF-κB) and of signal transducer and activator of transcription 3 (STAT3). The expression of antiapoptotic, cell proliferation and tumor-promoting genes (bcl-2, X-chromosome inhibitor of apoptosis protein (IAP), cellular IAP and cellular FADD-like IL-1β-converting enzyme-inhibitory protein, cyclin D), cyclin-dependent kinase 4, cycolooxygenase-2 and inducible nitric oxide synthase was decreased, whereas the expression of apoptotic target genes (caspase-3 and -9, bax) increased. In tumor, spleen and blood, the number of cytotoxic CD8+ T cells and CD57+ natural killer cells and the levels of IL-10 increased, but that of tumor necrosis factor-α (TNF-α), IL-1β and IL-6 decreased. We also found that forced overexpression of IL-32γ inhibited colon cancer cell (SW620 and HCT116) growth accompanied with the inhibition of activated NF-κB and STAT3 in vitro. In addition, when IL-32γ was knocked down by small interfering RNA (siRNA) or neutralized with an anti-IL-32γ antibody, IL-32γ-induced colon cancer cell growth inhibition, the IL-32γ-induced decrease of TNF-α, IL-1 and IL-6 production, and the increase of IL-10 production were abolished. However, siRNA of NF-κB and STAT3 augmented IL-32γ-induced colon cancer cell growth inhibition. These findings indicate significant pathophysiological roles of IL-32γ in cancer development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.