Abstract

Human mesenchymal stromal cells (MSCs) harbor immunomodulatory properties to induce the generation of suppressive T cells. MSCs have been successfully used in treating graft-versus-host disease (GVHD) accompanied by abundant inflammatory cytokines such as IL-27. This study investigated the effects of IL-27 on the human placenta-derived MSCs (hPMSCs) to induce generation of CD4+IL-10+IFN-γ+ T cells in vitro and in the humanized xenogenic GVHD NOD/SCID model. The results showed that the percentages of CD4+IL-10+IFN-γ+ T cells were significantly increased in activated human PBMC from both healthy donors and GVHD patients with hPMSCs and in the liver and spleen of hPMSC-treated GVHD mice, and the level of CD4+IL-10+IFN-γ+ T cells in the liver was greater than that in the spleen in hPMSC-treated GVHD mice. The serum level of IL-27 decreased and the symptoms abated in hPMSC-treated GVHD. Further, in vitro results showed that IL-27 promoted the regulatory effects of hPMSCs by enhancing the generation of CD4+IL-10+IFN-γ+ T cells from activated PBMC. Activation occurred through increases in the expression of programmed death ligand 2 (PDL2) in hPMSCs via the JAK/STAT signaling pathway. These findings indicated that hPMSCs could alleviate GVHD mice symptoms by upregulating the production of CD4+IL-10+IFN-γ+ T cells in the spleen and liver and downregulating serum levels of IL-27. In turn, the ability of hPMSCs to induce the generation of CD4+IL-10+IFN-γ+ T cells could be promoted by IL-27 through increases in PDL2 expression in hPMSCs. The results of this study will be of benefit for the application of hPMSCs in clinical trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call