Abstract

BackgroundInterleukin-17A (IL-17A) is not only an important modulator of inflammatory reactions, but also affects bone metabolism, which is involved in osteogenic differentiation of stem cells. However, the role and mechanism of IL-17A in osteogenic differentiation of bone mesenchymal stem cells (BMSCs) are not fully understood. In this study, we investigated the role and mechanism of IL-17A in osteogenic differentiation of BMSCs.Material/MethodsThe osteogenic differentiation of BMSCs was induced by osteoblast-induction medium with IL-17A or without IL-17A. The osteogenic differentiation of BMSCs was confirmed by the alkaline phosphatase and alizarin red staining. The lentiviral plasmid was used to construct the sFRP1-shRNA expression vector. The associated osteogenic differentiation marks (RUNX2, ALP, OPN), Wnt signaling pathway inhibitor (sFRP1), and modulators of Wnt signaling pathway (Wnt3, Wnt6) were detected by qRT-PCR and Western blot method.ResultsThe results showed that the addition of IL-17A inhibited osteogenic differentiation of BMSCs. IL-17A induced up-regulated expression of sFRP1 and down-regulated expression of Wnt3 and Wnt6 in BMSCs. In addition, sFRP1-shRNA abolished the inhibition effect of IL-17A in osteogenic differentiation of BMSCs and induced up-regulated expression of Wnt3 and Wnt6 in the Wnt signaling pathway in BMSCs.ConclusionsOur findings show that IL-17A inhibits osteogenic differentiation of bone mesenchymal stem cells via the Wnt signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call