Abstract

ObjectiveThe interleukin-17 (IL-17) family is a group of pro-inflammatory cytokines that are produced by a subset of helper T cells. IL-17 family members are not only involved in the immune response of tissues but also play a role in bone metabolism. Although the role of IL-17 in osteoclast-mediated bone resorption has been extensively studied, its role during osteoblast-mediated bone formation has rarely been investigated. In this study, we examined the effect of IL-17 on osteogenesis in rats both in vitro and in vivo. DesignTo evaluate osteogenesis in vitro, rat calvarial osteoblast precursor cells were cultured for 14 days in osteogenic medium with or without 50ng/mL IL-17. Osteogenic activity was evaluated by alkaline phosphatase and alizarin red staining. The mRNA expression of alkaline phosphatase, osteocalcin, and osterix was also measured by using real-time PCR. To test whether IL-17 affects bone formation in vivo, bone filling was examined by micro-computed tomography and histological observations at 8 weeks after critical-sized defects were made in rat calvaria. ResultsThe presence of IL-17 significantly reduced alkaline phosphatase and alizarin red staining and the expression of alkaline phosphatase, osteocalcin, and osterix in vitro. IL-17 also significantly inhibited the filling of calvarial defects in vivo. ConclusionIL-17 exerted a negative effect on osteogenesis in a rat model. In contrast to the previously reported beneficial effect on osteogenic differentiation of human mesenchymal stem cells, our results suggest a species or cell type-specific role for IL-17 in bone formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.