Abstract

BackgroundIL-17 and IL-22 cytokines play an important role in protective immune responses against Mycobacterium tuberculosis (Mtb) infection. Information on the production of these cytokines and the factors that regulate their production in the context of human immunodeficiency virus (HIV) and latent tuberculosis infection (LTBI) or active tuberculosis disease (ATB) is limited. In the current study, we compared the production of these two cytokines by PBMC of HIV-LTBI+ and HIV + LTBI+ individuals in response to Mtb antigens CFP-10 (culture filtrate protein) and ESAT-6 (Early Secretory Antigenic Target). We also determined the mechanisms involved in their production.MethodsWe cultured Peripheral Blood Mononuclear Cells (PBMCs) from HIV- individuals and HIV+ patients with latent tuberculosis and active disease with CFP-10 and ESAT-6. Production of IL-17, IL-22 and PD1 (Programmed Death 1), ICOS (Inducible T-cell Costimulator), IL-23R and FoxP3 (Forkhead box P3) expression on CD4+ T cells was measured.ResultsIn response to Mtb antigens CFP-10 and ESAT-6, freshly isolated PBMCs from HIV+ LTBI+ and HIV+ active TB patients produced less IL-17 and IL-22 and more IL-10, expressed less IL-23R, and more PD1 and expanded to more FoxP3+ cells. Active TB infection in HIV+ individuals further inhibited antigen specific IL-17 and IL-22 production compared to those with LTBI. Neutralization of PD1 restored IL-23R expression, IL-17 and IL-22 levels and lowered IL-10 production and reduced expansion of FoxP3 T cells.ConclusionsIn the current study we found that increased PD1 expression in HIV + LTBI+ and HIV+ active TB patients inhibits IL-17, IL-22 production and IL-23R expression in response to Mtb antigens CFP-10 and ESAT-6.

Highlights

  • IL-17 and IL-22 cytokines play an important role in protective immune responses against Mycobacterium tuberculosis (Mtb) infection

  • Our findings further demonstrate that in response Mtb antigens Culture Filtrate Protein (CFP-10) and Early Secreted Antigenic Target (ESAT)-6, Peripheral Blood Mononuclear Cells (PBMC) from human immunodeficiency virus (HIV) + latent tuberculosis infection (LTBI)+ and HIV + active TB patients produce less of two important protective Th17 cytokines IL-17 and IL-22 compared to HIV-LTBI+ healthy individuals

  • IL-23R is essential for IL-17 production [35] and in the current study, we found decreased IL-17 and IL-22 production is associated with reduced IL-23R expression by CD4+ cells of HIV + LTBI+ and HIV + active TB patients

Read more

Summary

Introduction

IL-17 and IL-22 cytokines play an important role in protective immune responses against Mycobacterium tuberculosis (Mtb) infection. We compared the production of these two cytokines by PBMC of HIV-LTBI+ and HIV + LTBI+ individuals in response to Mtb antigens CFP-10 (culture filtrate protein) and ESAT-6 (Early Secretory Antigenic Target). IL-17, released by antigen-experienced CD4 cells [5] is critical in vaccine-induced protective immune responses against Mtb infection [4, 6, 7] We demonstrated earlier that reduced IL-17 production by CD4+ T. We tested the hypothesis whether increased PD1 expression in HIV + LTBI+ individuals enhances FoxP3+ cell expansion and IL-10 production, inhibits the expression of IL-23R and production of IL-17 and IL-22 in response to Mtb antigens CFP-10 and ESAT-6 IL-22 decreases the number of immunosuppressive T-regulatory cells and contributes to the efficacy of BCG vaccination, decreasing the bacillary burden and increasing antigen-specific T-cell responses after challenge with Mtb [10].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call