Abstract
Engagement of OX40 greatly improves CD4 T cell function and survival. Previously, we showed that both OX40 engagement and CTLA-4 blockade led to enhanced CD4 T cell expansion, but only OX40 signaling increased survival. To identify pathways associated with OX40-mediated survival, the gene expression of Ag-activated CD4 T cells isolated from mice treated with anti-OX40 and -CTLA-4 was compared. This comparison revealed a potential role for IL-12 through increased expression of the IL-12R-signaling subunit (IL-12Rbeta2) on T cells activated 3 days previously with Ag and anti-OX40. The temporal expression of IL-12Rbeta2 on OX40-stimulated CD4 T cells was tightly regulated and peaked approximately 4-6 days after initial activation/expansion, but before the beginning of T cell contraction. IL-12 signaling, during this window of IL-12Rbeta2 expression, was required for enhanced T cell survival and survival was associated with STAT4-specific signaling. The findings from these observations were exploited in several different mouse tumor models where we found that the combination of anti-OX40 and IL-12 showed synergistic therapeutic efficacy. These results may lead to the elucidation of the molecular pathways involved with CD4 T cell survival that contribute to improved memory, and understanding of these pathways could lead to greater efficacy of immune stimulatory Abs in tumor-bearing individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.