Abstract

BackgroundIL-10 is an immunoregulatory cytokine that increases during malignant diseases. The purpose of this study was to: i) determine the mRNA amounts of IL-10, IL-10Rα, and IL-10Rβ in cutaneous and uveal melanoma cells and specimens; ii) evaluate their post-transcriptional regulation by miRNAs; iii) ascertain whether miRNA dysregulation may affect IL-10-induced proliferation.MethodsGenome-wide miRNA expression profiling was performed using a human microarray platform. The reference gene mRNA was measured through qPCR. miRNAs/mRNAs interactions were predicted by TargetScan, microRNA, and PITA. Transfections of specific miRNA mimics/inhibitors were carried out. Cell proliferation was assessed by MTT assay in the presence of IL-10 after transfection with miRNA mimics/inhibitors.ResultsThere were no differences in IL-10 mRNA levels between any of the 3 melanoma cell lines tested and normal melanocytes. However, lower IL-10Rα expression was found in G361 and OCM-1 cells, and higher levels of IL-10Rβ were observed in G361 cells compared with normal melanocytes. GR-M cells did not exhibit any modifications in IL-10Rα and IL-10Rβ expression. miR-15a, miR-185, miR-211, and miR-30d were upregulated in G361 and OCM-1 cells, remaining at similar levels in GR-M cells. miR-409-3p and miR-605were down-regulated exclusively in G361 cells. Prediction tools revealed that miR-15a, miR-185, and miR-211 targeted IL-10Rα whereas none of the miRNAs exclusively downregulated in G361 cells targeted IL-10Rβ. Luciferase reporter and western blot assays showed that IL-10Rα expression is directly regulated by miR-15a, miR-185, and miR-211, either alone or in combination. An inverse expression pattern between IL-10Rα, on one side, and miR-15a, miR-185, and miR-211 on the other one was also shown in melanoma samples. Ectopic expression of individual miR-15a, miR-185, and miR-211, and even more their co-expression, caused a marked decrease in the proliferation rate of all the cell lines. Likewise, inhibition of any specific miRNA promoted cell growth, an effect that further increased when inhibition concerned all three miRNA. Moreover, specific knockdown of IL-10Rα prevented the proliferative effect of miRNA inhibitors.ConclusionsOur results support a key role of IL-10Rα in the development and progression of melanoma and suggest that the IL-10/IL-10 receptor system may become a new therapeutic target for melanoma treatment.

Highlights

  • IL-10 is an immunoregulatory cytokine that increases during malignant diseases

  • Lower amounts of IL-10Rα expression were found in G361 and OCM-1 cells, and higher levels of IL-10Rβ were observed in G361 cells

  • GR-M did not exhibit any modifications in IL-10Rα or IL-10Rβ expression

Read more

Summary

Introduction

IL-10 is an immunoregulatory cytokine that increases during malignant diseases. The purpose of this study was to: i) determine the mRNA amounts of IL-10, IL-10Rα, and IL-10Rβ in cutaneous and uveal melanoma cells and specimens; ii) evaluate their post-transcriptional regulation by miRNAs; iii) ascertain whether miRNA dysregulation may affect IL-10-induced proliferation. IL-10 is generally believed to repress the inflammatory response [1] and immune reactions against a variety of tumors [2, 3] This cytokine is secreted by immune and non-immune cells [4] and its production was found to increase during malignant diseases, including melanoma [5]. It was shown that IL-10 can decrease proinflammatory cytokine expression [9] or anti-tumor T cell responses [7, 9] These data suggested that the production of IL-10 by melanoma cells and its release in the surrounding microenvironment might produce a paralysis of the anti-melanoma immune response [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call