Abstract
ObjectivesThere is mounting evidence that interleukin-9 (IL-9) is associated with various cancers although its function in lung cancer remains elusive. This study aimed to elucidate the role(s) of IL-9 in lung cancer and the mechanisms involved. Materials and methodsExpression of IL-9 receptor (IL-9R) in two murine lung cancer cell lines: CMT167 and Lewis lung carcinoma (LLC) were assessed and syngeneic murine lung cancer models were established. Tumor growth, intratumoral immune responses and downstream signaling pathways in tumor-bearing mice were analyzed upon IL-9 treatment. Human lung cancer cell lines A549 and H1975 were included for in vitro validation. Synergistic effects and immune responses of IL-9 in combination with anti-PD-1 were studied. ResultsIL-9R expression was only detected in CMT167 but not LLC cells. IL-9 suppressed CMT167 tumor growth and enhanced anti-tumor T cell responses, both of which were absent in IL-9R-deficient LLC model and lost upon IL-9R knockdown in CMT167 model. In CMT167 tumors, while IL-9 increased CD4+ and CD8+ T cells and dendritic cells, the cytotoxic T subset was the key driver of IL-9-induced tumor suppression. Consistently, in CMT167 and A549 cells, IL-9/IL-9R signaling promoted MHC class I upregulation. Inhibition of ERK signaling abolished IL-9-mediated MHC class I upregulation in CMT167 cells. IL-9 induced expression of PD-1 and PD-L1 on CD8+ T lymphocytes and CMT167 cells respectively. Combined IL-9 treatment with PD-1 blockade further upregulated tumor-infiltrating CD8+ T cell frequencies and synergistically suppressed tumor growth in CMT167 model. ConclusionIL-9 suppresses tumor growth by promoting tumor-derived MHC class I presentation and enhancing cytotoxic T cell immunity. Expression of IL-9R might be used as a biomarker for identification of potential target population susceptible to IL-9 treatment. Our study proposes IL-9 as a promising therapeutic immunomodulatory agent that can be used in combination with PD-1 blockade in lung cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.