Abstract

Our previous study has confirmed that IL-7δ5 (an IL-7 variant lacking exon 5) promotes breast cancer growth. However, whether IL-7δ5 is involved in tumor cell EMT and metastasis remains unclear. In this study, we investigated the preclinical effects and molecular mechanisms of IL-7δ5 on EMT and metastasis in human MCF-7 and BT-20 breast cancer cells in vitro and in vivo. The results showed that IL-7δ5 induced EMT and invasion in tumor cells, associated with up-regulation of N-cadherin and the down-regulation of E-cadherin. Furthermore, we found that IL-7δ5 induced the activation of Akt. Inhibition of PI3K/Akt pathway by LY294002 reversed the EMT transition in breast cancer cell lines MCF-7 and BT-20 induced by IL-7δ5. In addition, IL-7δ5 enhanced cancer metastasis and shortened survival time, with increased level changes of activated Akt in nude mice with breast cancer. In conclusion, our findings demonstrate that IL-7δ5 induces human breast cancer cell lines EMT and metastasis via activation of PI3K/Akt pathway. Thus, IL-7δ5 may be a potential target against human breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call