Abstract
BackgroundWe have previously discovered a relationship between the low expression of protein tyrosine phosphatase, receptor type O (PTPRO) in tumor-infiltrating T cells and immunosuppression. The aim of the present study was to investigate the relationship between decreased PTPRO and increased programmed death ligand 1 (PD-L1) in both the peripheral monocytes and tumor-infiltrating macrophages of human hepatocellular carcinoma (HCC).MethodsThe expression and correlation of all the indices were explored in monocytes and tumor-infiltrating macrophages within both human and mice HCC. The mechanic regulations were studied by using both in vitro and in vivo studies.ResultsWe found a significant decrease in PTPRO in HCC peripheral monocytes that was associated with increased PD-L1 expression in peripheral monocytes and tumor-associated macrophages (TAMs) in HCC. Monocyte PD-L1 and PTPRO therefore could serve as valuable prognostic indicators for post-surgery patients with HCC and were associated with increased T-cell exhaustion (Tim3+T cells). A depletion of PTPRO promoted PD-L1 secretion in both monocytes and macrophages through the JAK2/STAT1 and JAK2/STAT3/c-MYC pathways. Increased IL-6 expression was associated with activation of JAK2/STAT3/c-MYC and with decreased PTPRO expression through the STAT3/c-MYC/miR-25–3 p axis. Monocytes and TAMs showed significantly increased miR-25–3 p expression, which could target the 3′ untranslated region of PTPRO. The miR-25–3 p expression positively correlated with serum IL-6 levels, but inversely correlated with PTPRO in HCC monocytes. IL-6/STAT3/c-MYC activation enhanced in vitro miR-25–3 p transcription and decreased PTPRO, while further promoting PD-L1 secretion. Adoptive cell transfer of c-MYC/miR-25–3 p–modified monocytes promoted tumor growth by downregulating PTPRO and causing a PD-L1–induced immunosuppression in an orthotopic tumor transplantation model.ConclusionsIncreased serum IL-6 downregulated PTPRO expression in HCC monocytes and macrophages by activating STAT3/c-MYC/miR-25–3 p and by further enhancing PD-L1 expression through JAK2/STAT1 and JAK2/STAT3/c-MYC signaling.
Highlights
We have previously discovered a relationship between the low expression of protein tyrosine phosphatase, receptor type O (PTPRO) in tumor- infiltrating T cells and immunosuppression
We found a significant decrease in PTPRO expression in tumor- associated macrophages (TAMs) and peripheral monocytes in patients with hepatocellular carcinoma (HCC), and this decreased expression was related to increased programmed death ligand 1 (PD-L1) expression
PTPRO is negatively associated with the PD-L1 expression by monocytes from human HCC We studied the expression of PTPRO and PD-L1 expression in monocytes isolated from the peripheral blood using magnetic beads labeled with anti-CD14 antibody
Summary
We have previously discovered a relationship between the low expression of protein tyrosine phosphatase, receptor type O (PTPRO) in tumor- infiltrating T cells and immunosuppression. The aim of the present study was to investigate the relationship between decreased PTPRO and increased programmed death ligand 1 (PD-L1) in both the peripheral monocytes and tumor-infiltrating macrophages of human hepatocellular carcinoma (HCC). Conclusions Increased serum IL-6 downregulated PTPRO expression in HCC monocytes and macrophages by activating STAT3/c-MYC/miR-25–3 p and by further enhancing PD-L1 expression through JAK2/STAT1 and JAK2/STAT3/c-M YC signaling. PD-L 1 is a negative inflammation regulator that causes apoptosis of activated T cells by binding to its receptor PD-1, and depletion of PD-L 1 in a mouse model has been shown to cause autoimmune diseases.[3] The interaction between PD-L 1/PD-1 predominates both in vivo and in vitro in the suppression of T-cell function, and especially in a tumor microenvironment (TME).[2] Accumulating evidence indicates that PD-L1+ tumor cells and other cells in a TME can induce apoptosis, energy decrease, and functional exhaustion in T cells.[3] The T-cell exhaustion associated with
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.