Abstract
During pathological bone loss, factors that are both stimulatory and inhibitory for osteoclast differentiation are over-expressed. Despite the presence of inhibitory factors, osteoclast differentiation is significantly enhanced to bring about bone loss. To examine the hypothesis that stimulatory growth factors overcome the effects of inhibitory factors, we have examined the ability of IGF-I, IGF-II, IL-6, LIF, and TNF-α to overcome osteoclast differentiation inhibition by GM-CSF in vitro. Osteoclast numbers were significantly elevated by treatment with IGF-I, IGF-II, IL-6, LIF, or TNF-α alone whereas GM-CSF treatment of stromal cell and osteoclast co-cultures inhibited osteoclast formation. IL-6, LIF, or TNF-α, individually overcame GM-CSF inhibition whereas neither IGF-I nor IGF-II treatment overcame GM-CSF inhibition. Interestingly, GM-CSF addition with either IL-6 or TNF-α increased osteoclast numbers beyond that seen with either IL-6 or TNF-α alone. Combined treatment with TNF-α and IL-6 showed a significant increase in osteoclast numbers with GM-CSF addition. Examination of the impacts of these growth factors individually or in combinations on stromal cell M-CSF, RANKL, and OPG expression revealed a complex pattern involving alterations in the ratio of RANKL to OPG and/or M-CSF expression as candidate mechanisms of action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.