Abstract

Corneal healing process under inflammatory conditions is not fully understood. We aimed at determining the effect of an inflammatory (presence of IL-6) or anti-inflammatory (presence of IL-10) environment and a mixture of both in the expression of IL-6 signaling pathway mediators, and on corneal wound healing in an in vitro scratch assay. For that purpose, human corneal epithelial cells were cultured until confluence. The effect of IL-6 (10 ng/ml), IL-10 (20 ng/ml) or IL-6 + IL-10 exposure on the expression of IL-6R, gp130, and STAT3 was determined by Western blotting and quantitative PCR, at different time points. The monolayer was mechanically wounded using a sterile 10 μl pipette tip. Wound healing rate in the presence or absence of these cytokines was measured immediately after cytokine exposure and after 4, 8, and 24 h. The effect of mitomycin C on wound healing rate, in control and IL-6-stimulated cells, was also evaluated. Detection of proliferative cells was performed with an EdU imaging kit. For the visualization of migrating cells, cold methanol-fixed cells were incubated with an α-actinin antibody. For the statistical analysis a two-factor design of experiment method was applied. Levene test was used to contrast equality of variances. If variances were equal, ANOVA was performed to test the equality of means. If variances were not equal, a Mood's median test was performed. We observed that IL-6 and IL-10 stimulation, and their combination, increased gp130 production at different time points. STAT3 production was increased in IL-6-stimulated cells, at 72 h. An increase in pSTAT3 production was found in IL-6- and IL-10-stimulated cells, that was sustained in time in IL-6 + IL-10 co-stimulated cultures. Scraped areas had an initial width of 570.57 ± 75.82 μm. In IL-6-exposed cells wound healing closure was faster than in control cells or IL-10-exposed cells. After 8 h, wound width in IL-10-exposed cells, was also significantly smaller than that of control cells. Cells exposed to IL-6 + IL-10 had the slowest wound healing rate, similar to control cells. Wounds were closed after 24 h regardless the experimental condition. Mitomycin C exposure increased the wound closure rate in every experimental condition. No significant differences in the percentage of proliferative cells at the edge of the scratch and in distant areas of the monolayer were found. At the edge of the scratch, some actin filaments of non-proliferative cells were directed through the cell-free area, independently of the stimulating condition. In conclusion, the presence of IL-10 and, most importantly, of IL-6, increased the wound healing rate in an in vitro corneal wound healing model. The combination of both cytokines did not have a synergistic action in wound healing. In our model, wound closure was the result of the combination of cell proliferation and cell migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call