Abstract

IL-4-mediated proangiogenic and proinflammatory vascular responses have been implicated in the pathogenesis of chronic lung diseases such as asthma. Although it is well known that hypoxia induces pulmonary angiogenesis and vascular alterations, the underlying mechanism of IL-4 on the pulmonary vasculature under hypoxic conditions remains unknown. In this context, we designed the present study to determine the functional importance of IL-4 for pulmonary angiogenesis under hypoxic conditions using IL-4 knockout (KO) animals. Our results show that hypoxia significantly increased IL-4R alpha expression in wild-type (WT) control lungs. Even though hypoxia significantly up-regulated vascular endothelial growth factor (VEGF) receptor expression in the lungs of both genotypes, hypoxia-induced VEGF, VCAM-1, HIF-1alpha, and ERK phosphorylation were significantly diminished in IL-4 KO lungs as compared with WT control lungs. In addition, hypoxia-induced pulmonary angiogenesis and proliferating activities in the airway and pulmonary artery were significantly suppressed in IL-4 KO lungs as compared with WT control lungs. We also isolated primary lung fibroblasts from these genotypes and stimulated these cells with hypoxia. Hypoxia-induced VEGF production was significantly suppressed in lung fibroblasts from IL-4 KO mice. These in vitro results are in accordance with the in vivo data. Furthermore, we observed a significant increase of hypoxia-induced pulmonary angiogenesis in STAT6 KO mice similar to that in WT controls. In conclusion, IL-4 has proangiogenic properties in the lung under hypoxic conditions via the VEGF pathway, and this is independent of the STAT6 pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.