Abstract

CTL have evolved two major mechanisms for target cell killing: one mediated by perforin/granzyme secretion and the other by Fas/Fas ligand (L) interaction. Although cytokines are integral to the development of naive CTL into cytolytic effectors, the role of cytokines on mechanisms of CTL killing is just emerging. In this study, we evaluate the effects of IL-4 in Fas(CD95)/FasL(CD95L)-mediated killing of Fas-overexpressing target cells. Recombinant vaccinia viruses (vv) were constructed to express respiratory syncytial virus M2 Ag alone (vvM2) or coexpress M2 and IL-4 (vvM2/IL-4). MHC-matched Fas-overexpressing target cells (L1210Fas+) were used to measure both perforin- and FasL-mediated killing pathways. In contrast to Fas-deficient (L1210Fas-) target cells, effectors from vvM2/IL-4-immunized mice were able to lyse L1210Fas+ target cells with similar magnitude as vvM2-infected mice. Addition of EGTA/Mg2+ revealed that effectors from vvM2/IL-4-infected mice primarily lyse targets by a Ca2+-independent Fas/FasL pathway. Analysis of FasL expression by flow cytometry showed that IL-4 increased cell surface FasL expression on CD4+ and CD8+ splenocytes, with peak expression on day 4 after infection. These data demonstrate that IL-4 increases FasL expression on T cells, resulting in a shift of the mechanism of CTL killing from a dominant perforin-mediated cytolytic pathway to a dominant FasL-mediated cytolytic pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.