Abstract
TH2 cells play a critical role in the pathogenesis of allergic asthma. Established TH2 cells have been shown to resist reprogramming into TH1 cells. The inherent stability of TH2 cells poses a significant barrier to treating allergic diseases. We sought to understand the mechanisms by which CD4(+) T cells from asthmatic patients resist the IL-27-mediated inhibition. We isolated and cultured CD4(+) T cells from both healthy subjects and allergic asthmatic patients to test whether IL-27 can inhibit IL-4 production by the cultured CD4(+) T cells using ELISA. Culturing conditions that resulted in resistance to IL-27 were determined by using both murine and human CD4(+) T-cell culture systems. Signal transducer and activator of transcription (STAT) 1 phosphorylation was analyzed by means of Western blotting and flow cytometry. Suppressor of cytokine signaling (Socs) mRNA expression was measured by using quantitative PCR. The small interfering RNA method was used to knockdown the expression of Socs3 mRNA. We demonstrated that CD4(+) T cells from asthmatic patients resisted the suppression of IL-4 production mediated by IL-27. We observed that repeated exposure to TH2-inducing conditions rendered healthy human CD4(+) T cells resistant to IL-27-mediated inhibition. Using an invitro murine culture system, we further demonstrated that repeated or higher doses of IL-4 stimulation, but not IL-2 stimulation, upregulated Socs3 mRNA expression and impaired IL-27-induced STAT1 phosphorylation. The knockdown of Socs3 mRNA expression restored IL-27-induced STAT1 phosphorylation and IL-27-mediated inhibition of IL-4 production. Our findings demonstrate that differentiated TH2 cells can resist IL-27-induced reprogramming toward TH1 cells by downregulating STAT1 phosphorylation and likely explain why the CD4(+) T cells of asthmatic patients are resistant to IL-27-mediated inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.