Abstract

The innate immune molecule surfactant protein-D (SP-D) plays an important regulatory role in the allergic airway response. In this study, we demonstrate that mice sensitized and challenged with either Aspergillus fumigatus (Af) or OVA have increased SP-D levels in their lung. SP-D mRNA and protein levels in the lung also increased in response to either rIL-4 or rIL-13 treatment. Type II alveolar epithelial cell expression of IL-4Rs in mice sensitized and challenged with Af, and in vitro induction of SP-D mRNA and protein by IL-4 and IL-13, but not IFN-gamma, suggested a direct role of IL-4R-mediated events. The regulatory function of IL-4 and IL-13 was further supported in STAT-6-deficient mice as well as in IL-4/IL-13 double knockout mice that failed to increase SP-D production upon allergen challenge. Interestingly, addition of rSP-D significantly inhibited Af-driven Th2 cell activation in vitro whereas mice lacking SP-D had increased numbers of CD4(+) cells with elevated IL-13 and thymus- and activation-regulated chemokine levels in the lung and showed exaggerated production of IgE and IgG1 following allergic sensitization. We propose that allergen exposure induces elevation in SP-D protein levels in an IL-4/IL-13-dependent manner, which in turn, prevents further activation of sensitized T cells. This negative feedback regulatory circuit could be essential in protecting the airways from inflammatory damage after allergen inhalation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call