Abstract

Atherosclerosis is characterized as a chronic inflammatory disease and macrophage-derived foam cells play a central role during the pathologic processes. A newly discovered cytokine interleukin-34 (IL-34) is closely associated with various inflammatory and autoimmune diseases. Expression of IL-34 in obesity, inflammatory bowel disease (IBD), rheumatoid arthritis (RA), lupus nephritis and coronary artery diseases (CAD) are significantly elevated. However, the role of IL-34 in atherosclerosis remains unknown. In our present study, we found that IL-34 treatment markedly increased the uptake of oxLDL, intracellular total and esterified cholesterol content but not cholesterol efflux, subsequently promoted foam cell formation through up-regulating CD36 expression via p38 MAPK signal pathway in bone marrow derived macrophages (BMDMs). Furthermore, treatment with IL-34 significantly elevated the oxLDL-induced up-regulation of pro-inflammatory cytokines. Our results conclude that IL-34 facilitates foam cell formation by increasing CD36-mediated lipid uptake and suggest a potential new risk biomarker for atherosclerosis.

Highlights

  • Cardiovascular diseases still remain to be the leading cause of mortality and morbidity worldwide[1,2]

  • Atherosclerosis has been considered as a chronic inflammatory disease characterized by the recruitment of immunocytes, and a devil of inflammatory cytokines involved in macrophage lipid metabolism[13]

  • We investigated whether IL-34 plays a role in macrophage cholesterol efflux. 3H-labeled cholesterol tracer was used to analyze the efflux to lipid-poor ApoA-I or HDL

Read more

Summary

Introduction

Cardiovascular diseases still remain to be the leading cause of mortality and morbidity worldwide[1,2]. Macrophages activated with IL-34 in vitro had an augmented capacity of oxLDL uptake by an enhancement of mRNA and protein expression of CD36 as well as aggravated secretion of pro-inflammatory cytokines and resulted in promoting foam cell formation. Results IL-34 enhanced macrophage cholesterol accumulation and promoted foam cell formation.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.