Abstract

Hyper-inflammatory reaction plays a crucial role in the pathophysiology of depression and anxiety disorders. However, the mechanisms underlying inflammation-induced anxiety changes remain poorly understood. Here, we showed that in the lipopolysaccharide (LPS)-induced anxiety model, Interleukin (IL)–33, a member of the IL-1 family, was up-regulated in the basolateral amygdala, and IL-33 deficiency prevent anxiety-like behavior. Overexpression of IL-33 in amygdalar astrocytes led to anxiety-like response via repressing brain-derived neurotrophic factor (BDNF) expression. Mechanically, IL-33 suppressed BDNF expression through NF-κB pathway to impair GABAergic transmission in the amygdala and NF-κB inhibitor abolished the effect of IL-33 on anxiety. Administration of an inverse GABAA receptor agonist increased the anxiety of IL-33- deficient mice. These results reveal that inflammatory response can activate anxiogenic circuits by suppressing BDNF and GABAergic neurons transmission, suggesting that IL-33 in basolateral amygdalar is a linker between inflammation and anxiety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.