Abstract

Osteoarthritis (OA) is a chronic disease of articular joints that leads to degeneration of both cartilage and subchondral bone. These degenerative changes are further aggravated by proinflammatory cytokines including IL-1β and TNF-α. Previously, we have reported that IL-3, a cytokine secreted by activated T cells, protects cartilage and bone damage in murine models of inflammatory and rheumatoid arthritis. However, how IL-3 protects cartilage degeneration is not yet known. In this study, we investigated the role of IL-3 on cartilage degeneration under both in vitro and in vivo conditions. We found that both mouse and human chondrocytes show strong expression of IL-3R at gene and protein levels. IL-3 increases the expression of mouse chondrocyte-specific genes, Sox9 and collagen type IIa, which were downregulated by IL-1β. Moreover, IL-3 downregulated IL-1β- and TNF-α-induced expression of matrix metalloproteinases in both mouse and human chondrocytes. Interestingly, IL-3 reduces the degeneration of articular cartilage and subchondral bone microarchitecture in a mouse model of human OA. Moreover, IL-3 showed the preventive and therapeutic effects on cartilage degeneration induced by IL-1β in micromass pellet cultures of human mesenchymal stem cells. Thus, to our knowledge, we provide the first evidence that IL-3 has therapeutic potential in amelioration of degeneration of articular cartilage and subchondral bone microarchitecture associated with OA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.