Abstract

Atopic dermatitis (AD) is a chronic, pruritic, inflammatory skin disease characterized by type 2 cytokines secreted by T helper type 2 cells and group 2 innate lymphoid cells. Despite a high degree of heterogeneity, AD is still explained by type 2 immunity, and the role of IL-17A, which is increased in acute, pediatric, or Asian patients with AD, remains poorly understood. Here, we aimed to investigate the role of IL-17A-producing group 3 innate lymphoid cells (ILC3s), which are unexplored immune cells, in the pathogenesis of AD. We found that the numbers of ILC3s in the skin of AD-induced mice were increased, and that neutralizing IL-17A delayed development of AD. Moreover, adoptive transfer of ILC3s accelerated the symptoms of AD. Mechanically, ILC3s induced IL-33 production by nonimmune skin cells, keratinocytes, and fibroblasts, which promoted type 2 immune responses. Because AD has a complex pathophysiology and a broad spectrum of clinical phenotypes, the presence of ILC3s in the skin and their interaction with nonimmune skin cells could explain the pathogenesis of cutaneous AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call