Abstract

Acanthamoeba keratitis (AK) is a very painful and vision-impairing infection of the cornea that is difficult to treat. Although past studies have indicated a critical role of neutrophils and macrophages in AK, the relative contribution of the proinflammatory cytokine, IL-17A, that is essential for migration, activation, and function of these cells into the cornea is poorly defined. Moreover, the role of the adaptive immune response, particularly the contribution of CD4(+) T cell subsets, Th17 and regulatory T cells , in AK is yet to be understood. In this report, using a mouse corneal intrastromal injection-induced AK model, we show that Acanthamoeba infection induces a strong CD4(+) T effector and regulatory T cell response in the cornea and local draining lymph nodes. We also demonstrate that corneal Acanthamoeba infection induces IL-17A expression and that IL-17A is critical for host protection against severe AK pathology. Accordingly, IL-17A neutralization in Acanthamoeba-infected wild-type mice or Acanthamoeba infection of mice lacking IL-17A resulted in a significantly increased corneal AK pathology, increased migration of inflammatory cells at the site of inflammation, and a significant increase in the effector CD4(+) T cell response in draining lymph nodes. Thus, in sharp contrast with other corneal infections such as herpes and Pseudomonas aeruginosa keratitis where IL-17A exacerbates corneal pathology and inflammation, the findings presented in this article suggest that IL-17A production after Acanthamoeba infection plays an important role in host protection against invading parasites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call