Abstract

Psoriasis is an autoimmune skin disease characterized by immunocyte activation, excessive proliferation, and abnormal differentiation of keratinocytes. Signal transducers and activators of transcription 3 (STAT3) play a crucial role in linking activated keratinocytes and immunocytes during psoriasis development. T helper (Th) 17 cells and secreted interleukin (IL)-17A contribute to its pathogenesis. IL-17A treated STAT3 overexpressing mouse model might serve as an animal model for psoriasis. In this study, we established a mouse model of psoriasiform dermatitis by intradermal IL-17A injection in STAT3 overexpressing mice. Transcriptome analyses were performed on the skin of wild type (WT), STAT3, and IL-17A treated STAT3 mice. Bioinformatics-based functional enrichment analysis was conducted to predict biological pathways. Meanwhile, the morphological and pathological features of skin lesions were observed, and the DEGs were verified by qPCR. IL-17A treated STAT3 mice skin lesions displayed the pathological features of hyperkeratosis and parakeratosis. The DEGs between IL-17A treated STAT3 mice and WT mice were highly consistent with those observed in psoriasis patients, including S100A8, S100A9, Sprr2, and LCE. Gene ontology (GO) analysis of the core DEGs revealed a robust immune response, chemotaxis, and cornified envelope, et al. The major KEGG enrichment pathways included IL-17 and Toll-like receptor signaling pathways. IL-17A exacerbates psoriasis dermatitis in a STAT3 overexpressing mouse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call