Abstract
BackgroundAcute myocardial infarction (AMI) is followed by an acute inflammation involving inflammasome activation, thereby inducing cardiac dysfunction. Interleukin-17A (IL-17A) involves in many inflammatory diseases, but its roles in inflammation following AMI are still obscure. The aim of this study is to investigate the roles of IL-17A in the inflammatory response following AMI and its underlying mechanisms. Methods and resultsNLRP3 inflammasome and AMPKα/p38MAPK/ERK1/2 signaling pathway were significantly activated under the induction of IL-17A in mouse peritoneal macrophages, which could be inhibited by AMPK inhibitor compound C (CC). Both p38MAPK and ERK1/2 inhibitors could partially inhibit the activation of NLRP3 inflammasome in macrophages treated by IL-17A. In vivo, IL-17A knockout not only decreased the infiltration of macrophages and the activation of NLRP3 inflammasome and AMPKα/p38MAPK/ERK1/2 signaling pathway in ischemic myocardium, but also improved cardiac function and reduced infarction size after the ligation of descending segment from left coronary artery for 3 days in mice, while IL-17A administration further aggravated the myocardial ischemic injury, which were prevented by CC administration. ConclusionIL-17A aggravates inflammatory response during AMI by inducing macrophages infiltration and activating NLRP3 inflammasome through AMPKα/p38MAPK/ERK1/2 pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.