Abstract

We investigated the role of IL-17 family members IL-17A and IL-17F in the induction of chemokines in mouse cultured mesangial cells (SV40 MES 13 cells). We evaluated the expression of the chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) by ELISA and real-time RT-PCR (Q-PCR). Activation of MAPK was assessed by immunoblotting. IL-17RA and IL-17RC were inhibited by small interfering RNA (siRNA). We found that IL-17A or IL-17F stimulation of mesangial cells led to both a dose- and time-dependent increase in MCP-1 and MIP-2 release. This effect was dependent on mRNA transcription and protein translation. Both also enhanced TNF-alpha- and IL-1beta-mediated MCP-1 and MIP-2 release in the cells. Additionally, we observed that IL-17A and IL-17F induced MAPK (p38 MAPK, ERK1/2, and JNK) activation and that pharmacological inhibitors of p38 MAPK (SB203580) and ERK1/2 (U0126), but not JNK (SP600125), blocked the IL-17A/IL-17F-mediated MCP-1 and MIP-2 release. Mesangial cells expressed IL-17RA and IL-17RC, and the IL-17A-mediated MCP-1 and MIP-2 release was significantly blocked by soluble IL-17RA. Furthermore, inhibition of either IL-17RA or IL-17RC expression via siRNA led to significant reduction of IL-17A/IL-17F-stimulated chemokine production. We conclude that IL-17A and IL-17F induce the production of chemokines MCP-1 and MIP-2 via MAPK pathways (p38 MAPK and ERK1/2), as well as mRNA transcription and protein translation and have synergistic effects with TNF-alpha and IL-1beta in cultured mesangial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.